
Constructive Computer Architecture:

Multirule systems and
Concurrent Execution of Rules

Yann Herklotz - EPFL

Slides adapted from 6.1920 with Thomas and
Arvind
(Spring 23, MIT)

6.1920February 13, 2024 L03-1

Systems with multiple
rules

February 13, 2024 L03-26.1920

A one-instruction vector
machine

Adds k to each element of an n-
element vector a and store it in b

Vectors are too large to be
stored in registers and therefore
stored in BRAM

BRAM interface is single ported

Let a and b be the current
pointers to the vectors, and n be
the number of elements in the
vector that remain to be
processed

BRAM

a b

a

b
+k

n

Let us build such a machine

6.1920February 13, 2024 L03-3

Steps in processing
Assume a, b, n and BRAM have been

initialized properly

Initiate a BRAM request to read an
element of a; increment a

Wait for the result; add k;

initiate a write of the result in b;
increment b; decrement n

Repeat these steps if n>0

BRAM

a b

a

b
+k

n

Let a and b be the current
pointers to the vectors,
and n be the number of
elements in the vector that
remain to be processed

6.1920February 13, 2024 L03-4

Rules for the vector
machine
rule init_read_a if (n>0 && turn == 0);

 mem.portA.request.put(BRAMReq{write:False,writeRes:False,

 address:a, datain:?});

 a <= a + 1;

 n <= n – 1;

 turn <= 1;

endrule

rule read_result if (turn == 1);

 let x <- mem.portA.response.get();

 mem.portA.request.put(BRAMReq{write:True, writeRes:False,

 address:b, datain:x + k});

 b <= b + 1;

 turn <= 0;

endrule

6.1920February 13, 2024 L03-5

Multi-rule Systems

Repeatedly:

Select a rule to execute

Compute the state updates

Make the state updates

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be

explained by observing the state updates
obtained by applying only one rule at a time

Non-deterministic
choice; User
annotations can
be used in rule
selection

However, for performance we execute multiple
rules concurrently whenever possible

6.1920February 13, 2024 L03-6

Rules for the vector
machine
rule init_read_a if (n>0 && turn == 0);

 mem.portA.request.put(BRAMReq{write:False,writeRes:False,

 address:a, datain:?});

 a <= a + 1;

 n <= n – 1;

 turn <= 1;

endrule

rule read_result if (turn == 1);

 let x <- mem.portA.response.get();

 mem.portA.request.put(BRAMReq{write:True, writeRes:False,

 address:b, datain:x + k});

 b <= b + 1;

 turn <= 0;

endrule

6.1920February 13, 2024 L03-7

The design still works
without taking turn! Or does
it?

Homework

To get familiarized with this
programming/execution model:

o Lab1-b: debug a simple multi-rule

machine that fail to compute dot

products

o Lab2: write your own matrix/matrix

multiply module

February 13, 2024 L03-86.1920

Multi-rule systems and
concurrency

February 13, 2024 L03-96.1920

Elastic pipeline

x

fifo1inQ

f1 f2 f3

fifo2 outQ

rule stage1;

 fifo1.enq(f1(inQ.first));

 inQ.deq(); endrule

rule stage2;

 fifo2.enq(f2(fifo1.first));

 fifo1.deq; endrule

rule stage3;

 outQ.enq(f3(fifo2.first));

 fifo2.deq; endrule

Can these rules fire
concurrently?

Yes, but it must be
possible to do enq
and deq on a fifo
simultaneously

6.1920February 13, 2024 L03-10

module mkFifo (Fifo#(1, t));

 Reg#(t) d <- mkRegU;

 Reg#(Bool) v <- mkReg(False);

 method Action enq(t x) if (!v);

 v <= True; d <= x;

 endmethod

 method Action deq if (v);

 v <= False;

 endmethod

 method t first if (v);

 return d;

 endmethod

endmodule

One-Element FIFO
Implementation

not full

not empty

not empty

n

n

rdy

enab

rdy

enab

rdy

e
n
q

d
e
q

fi
rs

t

FIFO

Can enq and deq methods be ready at

the same time?

No! Therefore, they cannot
execute concurrently!

6.1920February 13, 2024 L03-11

Concurrency when the FIFOs do
not permit concurrent enq and deq

x

fifo1inQ

f1 f2 f3

fifo2 outQ

not
empty

not
empty

&
not full

not
empty

&
not full

not full

At best alternate stages in the pipeline will
be able to fire concurrently

6.1920February 13, 2024 L03-12

Two-Element FIFO

Initially, both va and vb are false

First enq will store the data in da and mark va
true

An enq can be done as long as vb is false; a

deq can be done as long as va is true

Assume, if there is only
one element in the FIFO
it resides in da

db da

vb va

6.1920February 13, 2024 L03-13

module mkFifo (Fifo#(2, t));

 Reg#(t) da <- mkRegU();

 Reg#(Bool) va <- mkReg(False);

 Reg#(t) db <- mkRegU();

 Reg#(Bool) vb <- mkReg(False);

 method Action enq(t x) if !vb;

 if (va) begin db <= x; vb <= True; end

 else begin da <= x; va <= True; end

 endmethod

 method Action deq if va;

 if (vb) begin da <= db; vb <= False; end

 else begin va <= False; end

 endmethod

 method t first if va; return da;

 endmethod

endmodule

Two-Element FIFO
BSV code

Assume, if there is only
one element in the FIFO
it resides in da

Can both enq
and deq be
ready at the
same time?

yes

db da

vb va

6.1920February 13, 2024 L03-14

method Action enq(t x) if !vb;

 if (va) begin db <= x; vb <= True; end

 else begin da <= x; va <= True; end

endmethod

method Action deq if va;

 if (vb) begin da <= db; vb <= False; end

 else begin va <= False; end

endmethod

Two-Element FIFO
Sequential behavior analysis

Suppose, initially vb=false and va=true (there is an element)

Suppose enq executes before deq

◼ enq executes: db <= x; vb <= True;

◼ deq executes: da <= x; vb <= False;

◼ Final values: da == x; db == x; va == True; vb == False;

Suppose deq executes before enq

◼ deq executes: va <= False;

◼ enq executes: da <= x; va <= True;

◼ Final values: da == x; db == ?; va == True; vb == False;

db da

vb va

6.1920February 13, 2024 L03-15

method Action enq(t x) if !vb;

 if (va) begin db <= x; vb <= True; end

 else begin da <= x; va <= True; end

endmethod

method Action deq if va;

 if (vb) begin da <= db; vb <= False; end

 else begin va <= False; end

endmethod

Two-Element FIFO
concurrency analysis

no double-
write error

Will concurrent execution of enq and deq cause a double

write error?

◼ Initially vb=False and va=True

◼ enq will execute: db <= x; vb <= True;

◼ deq will execute va <= False;

The final state will be va = False and vb = True;
with the old data in da and new data in db

db da

vb va

oops!

we can’t get into
this state if enq and
deq are performed
in some order

6.1920February 13, 2024 L03-16

method Action enq(t x) if !vb;

 if (va) begin db <= x; vb <= True; end

 else begin da <= x; va <= True; end

endmethod

method Action deq if va;

 if (vb) begin da <= db; vb <= False; end

 else begin va <= False; end

endmethod

Two-Element FIFO
concurrency analysis - continued

In this implementation, enq and deq should not be

called concurrently
later we will present a systematic procedure to decide which

methods of a module can be called concurrently

First, we will study when two rules that only use
registers can be executed concurrently

db da

vb va

6.1920February 13, 2024 L03-17

Concurrent execution of
rules

Two rules can execute concurrently, if
concurrent execution would not cause a

double-write error, and

The final state can be obtained by executing
rules one-at-a-time in some sequential order

6.1920February 13, 2024 L03-18

Can these rules execute concurrently?
(without violating the one-rule-at-a-time-semantics)

rule ra;

 x <= x+1;

endrule

rule rb;

 y <= y+2;

endrule

 Final value of (x,y) (initial values (0,0))
 Exam 1 Exam2 Exam3
Concurrent
Execution
ra<rb

rb<ra

Example 1

rule ra;

 x <= y+1;

endrule

rule rb;

 y <= x+2;

endrule

Example 2

rule ra;

 x <= y+1;

endrule

rule rb;

 y <= y+2;

endrule

Example 3

(1,2)

(1,2)

(1,2)

(1,2)

(1,3)

(3,2)

(1,2)

(1,2)

(3,2)

No Conflict Conflict ra<rb

6.1920February 13, 2024 L03-19

Rule scheduling

The BSV compiler schedules as many rules as
possible for concurrent execution among the

rules that are enabled (i.e., whose guards are
true), provided it can ensure that the chosen
rules don’t conflict with each other

Conflict:

◼ Double write

◼ If the effect of rule execution does not appear to be
as if one rule executed after the other

6.1920February 13, 2024 L03-20

Scheduling, systematically

First register only, and with
arbitrary modules

February 13, 2024 L03-216.1920

some insight into

Concurrent rule execution

There are more intermediate states in the rule
semantics (a state after each rule step)

 In the HW, states change only at clock edges

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

6.1920February 13, 2024 L03-22

Parallel execution
reorders reads and writes

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

In the HW, rules only see the effects from

previous clocks, and only affect subsequent
clocks

Rules

HW
clocks

rule

steps
reads writes reads writes reads writesreads writesreads writes

reads writes reads writes

6.1920February 13, 2024 L03-23

Correctness

The compiler will schedule rules concurrently
only if the net state change is equivalent to a

sequential rule execution

Rules

HW

Ri Rj Rk

clocks

rule

steps

Ri

Rj

Rk

6.1920February 13, 2024 L03-24

Compiler test for concurrent
rule execution James Hoe, Ph.D., 2000

Let RS(r) be the set of registers rule r may read

Let WS(r) be the set of registers rule r may write

Rules ra and rb are conflict free (CF) if

(RS(ra)WS(rb) = )  (RS(rb)WS(ra) = ) 
(WS(ra)WS(rb) = )

Rules ra and rb are sequentially composable (SC)

(ra<rb) if

 (RS(rb)WS(ra) = )  (WS(ra)WS(rb) = )

If Rules ra and rb conflict if they are not CF or SC

6.1920February 13, 2024 L03-25

Compiler analysis

rule ra;

 x <= x+1;

endrule

rule rb;

 y <= y+2;

endrule

 Exam 1 Exam2 Exam3
RS(ra) {x} {y} {y}
WS(ra) {x} {x} {x}
RS(rb) {y} {x} {y}
WS(rb) {y} {y} {y}
RS(ra)WS(rb)  {y} {y}
RS(rb)WS(ra)  {x} 
WS(ra)WS(rb)   
Conflict? CF C SC

Example 1

rule ra;

 x <= y+1;

endrule

rule rb;

 y <= x+2;

endrule

Example 2

rule ra;

 x <= y+1;

endrule

rule rb;

 y <= y+2;

endrule

Example 3

6.1920February 13, 2024 L03-26

Concurrent scheduling
The BSV compiler determines which rules
among the rules whose guards are ready can

be executed concurrently

It builds a simple greedy list-based scheduler:

◼ Picks the first enabled rule in the list

◼ Schedules the next enabled rule if it does not conflict
with any of the rules scheduled so far

◼ Repeats the process until no more rules can be
scheduled

Such a scheduler can be built as a pure
combinational circuit, but it is not fair

In practice it does fine, and one can get
around it programmatically

The list is built using
textual ordering of rules
but can be changed by
user annotations

6.1920February 13, 2024 L03-27

Scheduling and Control
Logic

6.1920February 13, 2024 L03-28

Compiling a Rule

f

x

current
state

next
state 



guard

f

x

rule r (f.first() > 0) ;

 x <= x + 1 ; f.deq ();

endrule

rdy signals,
read methods

next state
values

6.1920February 13, 2024 L03-29

Combining State Updates:

strawman

next state
value

flip-flop
enable

R

OR

1

n

1,R

n,R

OR

’s from the rules
that update R

’s from the rules
that update R

What if more than one rule is enabled?

6.1920February 13, 2024 L03-30

Combining State Updates

next state
value

R

Scheduler:
Priority
Encoder

OR

1

n

1

n

1,R

n,R

OR
’s from the rules

that update R

Scheduler ensures that at most one i is true

’s from all
the rules

one-rule-at-
a-time
scheduler is
conservative

Enable for
register R

6.1920February 13, 2024 L03-31

Scheduling and control logic

Modules
(Current state)

Rules



 Scheduler

1

n

1

n

Muxing

1

n
n

n

Modules
(Next state)

cond

action

“CAN_FIRE” “WILL_FIRE”

Compiler synthesizes a scheduler such that at any
given time ’s for only non-conflicting rules are true

6.1920February 13, 2024 L03-32

Takeaway
One-rule-at-a-time semantics are very
important to understand what behaviors a

system can show

Efficient hardware for multi-rule system
requires that many rules execute in parallel
without violating the one-rule-at-time

semantics

BSV compiler builds a scheduler circuit to
execute as many rules as possible

concurrently

6.1920February 13, 2024 L03-33

	Slide 1
	Slide 2: Systems with multiple rules
	Slide 3: A one-instruction vector machine
	Slide 4: Steps in processing
	Slide 5: Rules for the vector machine
	Slide 6: Multi-rule Systems
	Slide 7: Rules for the vector machine
	Slide 8: Homework
	Slide 9: Multi-rule systems and concurrency
	Slide 10: Elastic pipeline
	Slide 11: One-Element FIFO Implementation
	Slide 12: Concurrency when the FIFOs do not permit concurrent enq and deq
	Slide 13: Two-Element FIFO
	Slide 14: Two-Element FIFO BSV code
	Slide 15: Two-Element FIFO Sequential behavior analysis
	Slide 16: Two-Element FIFO concurrency analysis
	Slide 17: Two-Element FIFO concurrency analysis - continued
	Slide 18: Concurrent execution of rules
	Slide 19: Can these rules execute concurrently? (without violating the one-rule-at-a-time-semantics)
	Slide 20: Rule scheduling
	Slide 21: Scheduling, systematically
	Slide 22: some insight into Concurrent rule execution
	Slide 23: Parallel execution reorders reads and writes
	Slide 24: Correctness
	Slide 25: Compiler test for concurrent rule execution James Hoe, Ph.D., 2000
	Slide 26: Compiler analysis
	Slide 27: Concurrent scheduling
	Slide 28: Scheduling and Control Logic
	Slide 29: Compiling a Rule
	Slide 30: Combining State Updates: strawman
	Slide 31: Combining State Updates
	Slide 32: Scheduling and control logic
	Slide 33: Takeaway

