N
““Constructive Computer Architecture:

Multirule systems and
Concurrent Execution of Rules

Yann Herklotz - EPFL

Slides adapted from 6.1920 with Thomas and
Arvind (

(Spring 23, MIT)

February 13, 2024 6.1920 LO3-1

' Systems with multiple
rules

N

February 13, 2024 6.1920 LO3-2

A one-instruction vector
machine

Adds k to each element of an n-
element vector a and storeit in b

Vectors are too large to be
stored in registers and therefore

stored in BRAM aii\ b k\
BRAM interface is single ported :
#® Let a and b be the current \
pointers to the vectors, and n be a
the number of elements in the +k

vector that remain to be b U
processed

N

Let us build such a machine

February 13, 2024 6.1920 LO3-3

Steps in processin

Assume a, b, n and BRAM have been
initialized properly

Initiate a BRAM request to read an
element of a; increment a

Wait for the result; add k;

initiate a write of the result in b;
increment b; decrement n

Repeat these steps if n>0

N

® @ @& @

g

BRAM

N

d

b

N

\

+k

\J

Let a and b be the current

pointers to the vectors,

and n be the number of
elements in the vector that

remain to be processed

February 13, 2024 6.1920

LO3-4

Rules for the vector
machine

rule init read a if (n>0 && turn == 0);

N

mem.portA.request.put (BRAMReg{write:False,writeRes:False,

address:a, datain:?});
a <= a + 1;
n <=n - 1;

turn <= 1;

endrule

rule read result if (turn == 1);
let x <- mem.portA.response.get();
mem.portA.request.put (BRAMReg{write:True, writeRes:False,
address:b, datain:x + k});
b <=Db + 1;
turn <= 0;

endrule

February 13, 2024 6.1920 LO3-5

Multi-rule Systems

Repeatedly: Non-deterministic

Select a rule to execute - choice; User
annotations can

Compute the state updates be used in rule

Make the state updates selection

One-rule-at-a-time-semantics: Any legal
behavior of a Bluespec program can be
explained by observing the state updates
obtained by applying only one rule at a time

However, for performance we execute multiple
rules concurrently whenever possible

February 13, 2024 6.1920 LO3-6

Rules for the vector
machine

N

rule init read a if (n>0—&&—twrn—==90);
mem.portA.request.put (BRAMReg{write:False,writeRes:False,
address:a, datain:?});
a <= a + 1;
i j: i - The design still works
e =7 without taking turn! Or does
endrule it?
rule read result HFEH{tora—==1);
let x <- mem.portA.response.get();
mem.portA.request.put (BRAMReg{write:True, writeRes:False,
address:b, datain:x + k});
b <=Db + 1;
taran—<=-—0<
endrule

February 13, 2024 6.1920 LO3-7

Homework

N

#®To get familiarized with this
programming/execution model:

- Labl-b: debug a simple multi-rule
machine that fail to compute dot
products

o Lab2: write your own matrix/matrix
multiply module

February 13, 2024 6.1920 LO3-8

Multi-rule systems and
concurrency

N

February 13, 2024 6.1920 LO3-9

Elastic pipeline

g
\J
X
inQ fifol fifo2 outQ
rule stagel; # Can these rules fire
fifol.eng(fl (inQ.first)); concurrently?
inQ.deqg() ; endrule
rule stage2; Yes, but it must be
fifo2.enqg(f2 (fifol.first)); possible to do eng
fifol.deq; endrule and deq on a fifo
rule stage3; simultaneously
outQ.eng (f3 (fifo2.first));
fifo2.deqg; endrule

February 13, 2024 6.1920 LO3-10

One-Element FIFO
Implementation

module mkFifo (Fifo# (1, t));

N

Reg# (t) d <- mkRegU; N =
Reg# (Bool) v <- mkReg(False); 7%&?%
method Action eng(t x) if (lv); notfull <gqg—
v <= True; d <= x; - “enab’| g FIFO
endmethod NOTEMPY < Tdy E
. . n_[2
method Action deg if (v); ot empty .+ IE
_ PY Trdy =
v <= False;
endmethod
method t first if (v);
return d; H
endmethod Can eng an_d de;q methods be ready at
aridmsdiTe the same time-:
No! Therefore, they cannot
execute concurrently! {

February 13, 2024 6.1920 LO3-11

Concurrency when the FIFOs do
not permit concurrent enqg and deg

Jefete-

N

X
inQ fifol fifo2 outQ
not not not not full
empty empty empty
& &
not full not full

At best alternate stages in the pipeline will
be able to fire concurrently

February 13, 2024 6.1920 LO03-12

Two-Element FIFO

vb va

N

Assume, if there is only

g
RN D D N one element in the FIFO
db da it resides in da

Initially, both va and vb are false

First eng will store the data in da and mark va
true

An eng can be done as long as vb is false; a
deq can be done as long as va is true

February 13, 2024 6.1920 LO3-13

Two-Element FIFO vb va

1]
BSV code D D
4 =" S
module mkFifo (Fifo# (2, t)); db da
Reg# (t) da <- mkRegU() ;

Assume, if there is only
one element in the FIFO

(
Reg# (Bool) va <- mkReg(False);
(it resides in da

Reg# (t) db <- mkReqgU() ;

Reg# (Bool) vb <- mkReg (False);

method Action eng(t x) if !vb;
if (va) begin db <= x; vb <= True; end

else begin da <= x; va <= True; end and deq be

endmethod

method Action deqg if va; ready(?rthe
if (vb) begin da <= db; vb <= False; end Same time?

Can both eng

else begin va <= False; end yes
endmethod
method t first if wva; return da;
endmethod
endmodule

February 13, 2024 6.1920 L0O3-14

Two-Element FIFO

) Sequential behavior analysis

ijethod Action eng(t x) 1if !'vb; VIZI:I) éla
if (va) begin db <= x; vb <= True; end
else begin da <= x; va <= True; end —_— [}[:] —_—
endmethod
db da

method Action deg if va;
if (vb) begin da <= db; vb <= False; end
else begin va <= False; end
endmethod

#® Suppose, initially vb=false and va=true (there is an element)
#® Suppose eng executes before deqg

m eng executes: db <= x; vb <= True;

s deg executes: da <= x; vb <= False;

s Final values: da == x; db == x; va == True; vb == False;
#® Suppose deg executes before eng

m deqg executes: va <= False;

s eng executes: da <= x; va <= True;

s Final values: da == x; db == ?; va == True; vb == False;

February 13, 2024 6.1920 LO3-15

Two-Element FIFO

concurrency analysis

p
kJmethod Action eng(t x) 1if !'vb; VIZI:I) éla
if (va) begin db <= x; vb <= True; end
else begin da <= x; va <= True; end —_ DD m—
endmethod db d
method Action deg if va; d
if (vb) begin da <= db; vb <= False; end we can't get into
else begin va <= False; end this state if enq and
endmethod deq are performed

in some order
#® Will concurrent execution of eng and deqg cause a double
write error?

s Initially vb=False and va=True

= eng Will execute: db <= x; vb <= True; no double-

s deg will execute va <= False; wrife error
#® The final state will be va = False and vb = True;

with the old data in da and new data in db oops!

February 13, 2024 6.1920 LO3-16

Two-Element FIFO

concurrency analysis - continued

-
NP
method Action eng(t x) if !'vb; VIZI:I) éla
if (va) begin db <= x; vb <= True; end
else begin da <= x; va <= True; end —_— [}[:] —_—
endmethod
db da

method Action deg if va;
if (vb) begin da <= db; vb <= False; end
else begin va <= False; end
endmethod

In this implementation, eng and deg should not be
called concurrently (

later we will present a systematic procedure to decide which
methods of a module can be called concurrently

#® First, we will study when two rules that only use
registers can be executed concurrently

February 13, 2024 6.1920 LO3-17

Concurrent execution of
rules

Two rules can execute concurrently, if
concurrent execution would not cause a
double-write error, and

The final state can be obtained by executing
rules one-at-a-time in some sequential order

N

February 13, 2024 6.1920

LO3-18

Can these rules execute concurrently?
(without violating the one-rule-at-a-time-semantics)

N
Example 1

rule ra;

x <= x+1;
endrule
rule rb;

y <= y+2;
endrule

Example 2

Example 3

Concurrent
Execution
ra<rb

rb<ra

February 13, 2024

rule ra;

x <= y+1;
endrule
rule rb;

y <= x+2;
endrule

rule ra;

x <= y+1;

endrule
rule rb;

y <= y+2;

endrule

No Conflict

Exam?2
(1,2)

(1,3)

(3,2)
Conflict

6.1920

Final value of (x,y) (initial values (0,0))

Exam 1 Exam3

(1,2)
(1,2)

(3,2)
ra<rb

LO3-19

Rule

scheduling

N

possib
rules t
true),

rules ¢

The BSV compiler schedules as many rules as

e for concurrent execution among the
nat are enabled (i.e., whose guards are
provided it can ensure that the chosen

on’t conflict with each other

Conflict:

= Double write
= If the effect of rule execution does not appear to be

as if

February 13, 2024

one rule executed after the other

6.1920

L03-20

\/

Scheduling, systematically

First register only, and with
arbitrary modules

N

February 13, 2024 6.1920 L03-21

some insight into
Concurrent rule execution

S
Ri ' rul
RUles ool deeel 4 A 9 4 o el 4 4 e 1A
 steps
SERRE’ N |
k >
HW I °R°° | | clocks
Ri ;

There are more intermediate states in the rule
semantics (a state after each rule step)

#® In the HW, states change only at clock edges

February 13, 2024 6.1920 L03-22

Parallel execution
reorders reads and writes

p
1V
Rules rule
Ireads writed reads write§I reads writedreads writesI reads write'J steps
Ireads writegl reads write;l
I ’! =| clocks
HW

In the rule semantics, each rule sees (reads)
the effects (writes) of previous rules

In the HW, rules only see the effects from
previous clocks, and only affect subsequent
clocks

February 13, 2024 6.1920 L03-23

Correctness

S
Rij ' /
Rules -1 1 HHIR—I-IE'IMH_JA |ﬂﬁ4|
‘ steps
i s |
Kk >
HW I °R°° | | clocks
Ri ;

The compiler will schedule rules concurrently
only if the net state change is equivalent to a
sequential rule execution

February 13, 2024 6.1920 L03-24

Compiler test for concurrent
rule execution james Hoe, Ph.D., 2000

@ Let RS(r) be the set of registers rule r may read
#® Let WS(r) be the set of registers rule r may write

N

Rules ra and rb are conflict free (CF) if

(RS(ra)mWS(rb) = ¢) A (RS(rb)mnWS(ra) = ¢) A
(WS(ra)mWS(rb) = o)

Rules ra and rb are sequentially composable (SC)
(ra<rb) if

(RS(rb)nWS(ra) = o) A (WS(ra)nWS(rb) = o)
If Rules ra and rb conflict if they are not CF or SC

February 13, 2024 6.1920 LO03-25

Compiler analysis

Example 1 Example 2 Example 3
rule ra; rule ra; rule ra;

x <=-x+1; x <= y+1; x <= y+1;
endrule endrule endrule
rule rb; rule rb; rule rb;

y <=-y+2; y <= x+2; y <= y+2;
endrule endrule endrule

Exam 1 Exam?2 Exam3

RS(ra) {x} {y} {y}
W5(ra) {x} {x} {x}
RS(rb) {y} {X} {y}
WS(rb) {y} {y} {y}
RS(ra)mWS(rb) ¢ {y} {y}
RS(rb)mWS(ra) o {x} o

WS(ra)mWS(rb) o o) o

Conflict? CF C SC

February 13, 2024 6.1920 LO03-26

Concurrent scheduling

The BSV compiler determines which rules
among the rules whose guards are ready can
be executed concurrently

It builds a simple greedy list-based scheduler:
= Picks the first enabled rule in the list

s Schedules the next enabled rule if it does not conflict
with any of the rules scheduled so far

= Repeats the process until no more rules can be

N

scheduled
The list is built using Such a scheduler can be built as a pure
textual ordering of rules combinational circuit, but it is not fair
but can be changed by
user annotations In practice it does fine, and one can get
around it programmatically

February 13, 2024 6.1920 LO03-27

>Scheduling and Control
Logic

N

February 13, 2024 6.1920 L03-28

N

curren
state

February 13, 2024

rule r (f.first ()

endrule

> : >
rdy signals,
read method

Compiling a Rule

> 0)

x <=x + 1 f.deg ();
——=-giiard
/
7T
| 5 1) next
next state) state
values
N
6.1920 L03-29

Combining State Updates:

Strawman
U5
7’'s from the rules .
that update R : OR
Tl b/
¥ flip-flop
enable
, Iy \
0's from the rules OR R
that update R next state
5. value

What if more than one rule is enabled?

February 13, 2024 6.1920 LO03-30

N

n1—>
7's from all
the rules

Tn >

o0's from the rules
that update R

8n,R

Scheduler:
Priority
Encoder

Combining State Updates

01 R

O one-rule-at-
. a-time
: OR scheduler is
conservative

On 4

Enable for

register R

OR next state:-

value

Scheduler ensures that at most one ¢ is true
6.1920

February 13, 2024

LO03-31

Scheduling and control logic

g
Y Modules Rules 'CAN_FIRE” "WILL_FIRE” Modules
(Current state) T 01 (Next state)
N\ d o /
l T * | Scheduler | - l

Tn | On
_ =1 R
L | JB
[/ ; e 0 o V\ [

. 8, —— .
l action| : Htodng : l
n | On -

J L

February 13, 2024

Compiler synthesizes a scheduler such that at any

given time ¢'s for only non-conflicting rules are true

6.1920

L03-32

Takeaway

One-rule-at-a-time semantics are very
important to understand what behaviors a
system can show

Efficient hardware for multi-rule system
requires that many rules execute in parallel
without violating the one-rule-at-time
semantics

#® BSV compiler builds a scheduler circuit to
execute as many rules as possible
concurrently

N

February 13, 2024 6.1920

LO3-33

	Slide 1
	Slide 2: Systems with multiple rules
	Slide 3: A one-instruction vector machine
	Slide 4: Steps in processing
	Slide 5: Rules for the vector machine
	Slide 6: Multi-rule Systems
	Slide 7: Rules for the vector machine
	Slide 8: Homework
	Slide 9: Multi-rule systems and concurrency
	Slide 10: Elastic pipeline
	Slide 11: One-Element FIFO Implementation
	Slide 12: Concurrency when the FIFOs do not permit concurrent enq and deq
	Slide 13: Two-Element FIFO
	Slide 14: Two-Element FIFO BSV code
	Slide 15: Two-Element FIFO Sequential behavior analysis
	Slide 16: Two-Element FIFO concurrency analysis
	Slide 17: Two-Element FIFO concurrency analysis - continued
	Slide 18: Concurrent execution of rules
	Slide 19: Can these rules execute concurrently? (without violating the one-rule-at-a-time-semantics)
	Slide 20: Rule scheduling
	Slide 21: Scheduling, systematically
	Slide 22: some insight into Concurrent rule execution
	Slide 23: Parallel execution reorders reads and writes
	Slide 24: Correctness
	Slide 25: Compiler test for concurrent rule execution James Hoe, Ph.D., 2000
	Slide 26: Compiler analysis
	Slide 27: Concurrent scheduling
	Slide 28: Scheduling and Control Logic
	Slide 29: Compiling a Rule
	Slide 30: Combining State Updates: strawman
	Slide 31: Combining State Updates
	Slide 32: Scheduling and control logic
	Slide 33: Takeaway

